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Abstract

A numerical method of analysis for the inverse kinematics problem of ¯exible link systems is presented. The
proposed method is based upon an iterative scheme, which consists of updating the system con®guration stepwise,

by correcting the positioning error due to link deformations through rigid body motions of ®nite amplitude. The
resulting nonlinear compensation scheme reduces to the solution of the inverse and direct kinematics problems of a
sequence of equivalent rigid link systems. These solutions are symbolically derived by means of the GroÈ bner basis
method. The convergence analysis of the proposed algorithm is developed. The applicability and the performance of

the present method are veri®ed trough some numerical tests, highlighting its advantages and disadvantages in
comparison with other methods found in the literature. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The model of rigid links is extensively adopted for the kinematics analysis due to the massive
structural design of industrial link systems (Fu et al., 1987; Koren, 1987; Paul, 1982). However, such a
model results in a slight inaccuraccy in handling the kinematics problem of the new generation of link
systems. In fact, to get high accuracy in motion controlling and to increase the operation speeds and
payloads, they are more slender and lighter, thus more deformable, notwithstanding the employment of
new materials such as composites.

The methods of analysis for the kinematics of link systems can be divided into numerical or local, and
analytical or global methods. The ®rst ones (Boudreau and Tukkan, 1996; Chang and Hamilton, 1991;
Colbaugh et al., 1990; Derby, 1983; Lin et al., 1991; Svinin and Uchiyama, 1994; Tornambe, 1990),
whose main feature is their general applicability, are often the only viable alternative for complex
systems, such as the ¯exible ones. They are based upon some techniques or compensation schemes of a
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linear type to correct the positioning error due to the link deformation. However, due to their nature,
just one of the solutions of the problem is obtained and, in some cases, these methods present some
delicate aspects regarding their convergence to the solution. On the other hand, the analytical methods
(Baillieul and Martin, 1990; Canny, 1988; Cox et al., 1992; Gosselin et al., 1995; Innocenti, 1995;
Lazard, 1992; Lazard and Merlet, 1994; Lopez and Recio, 1993; Lee and Liang, 1988; Mavroidis et al.,
1994; Shahinpoor, 1992; Tsai and Morgan, 1985; Zhang and Song, 1992) are not always successfully
applicable, since they require a heavy computational burden and are less e�ective when the complexity
of the system to be analyzed increases. In spite of that, they are to be preferred if applicable, i.e. for the
analysis of some undeformable (or rigid) link systems, since they o�er all the symbolic solutions of the
problem. The algebraic elimination methods, such as the GroÈ bner basis method (Cox et al., 1992;
Lazard, 1992; Lopez and Recio, 1993) and Sylvester's dialytical elimination method (Mavroidis et al.,
1994; Tsai and Morgan, 1985) have acquired a particular importance among the analytical procedures.
At the current state of algorithmic developments (Char et al., 1991; GraÈ be, 1993), the GroÈ bner basis
method could be less e�ective with respect to the dialytical elimination method. However, it is the only
analytical method which permits a systematic and a completely general approach to a problem without
introducing extraneous solutions, as could occur when the dialytical elimination method is used.

A numerical method for the analysis of ¯exible link systems, based upon an iterative scheme, is
presented in this paper. The method is applicable to any type of structure: serial, parallel or hybrid,
whether kinematically undetermined (redundant) or not. The related algorithm consists of updating the
system con®guration stepwise, by correcting the positioning error due to the link deformation by means
of rigid body motions of ®nite amplitude. The resulting compensation scheme is nonlinear and consists
of solving the inverse and the direct kinematics problems of a sequence of equivalent rigid link systems.
These solutions are symbolically derived using the GroÈ bner basis method, which is considered the most
convenient approach in this context. The parametric solutions of the inverse and the direct problems are
computed only once, in a preliminary phase and, thereafter, they are specialized at each iteration.
Finally, the present nonlinear compensation scheme is more e�ective than the linear ones.

2. Governing equations and conventional approaches

Consider a system S, which is made up of ¯exible bodies (links) mutually connected by undeformable
joints (Fig. 1). The terminal element of S, generally called the end-e�ector, is a special link which is used

Fig. 1. Typologies of link systems: (a) serial, (b) parallel and (c) hybrid.

F. Ubertini / International Journal of Solids and Structures 37 (2000) 969±990970



to interact with the environment and can be of various shapes (e.g. a grasping instrument, a platform,
or other speci®c tools).

The typical con®guration C of S can be represented by the superposition of the con®guration Cr,
which is obtained through relative joint movements by assuming the links as rigid bodies, and the
con®guration Cd, which derives from the previous one only through the deformation of the links (Chang
and Hamilton, 1991; Fig. 2). The con®guration Cr is described by the vector of the joint degrees of
freedom, q, by the end-e�ector position vector, Pr, and by a vector of geometric parameters, g, which
describes the geometry of the links in their undeformed shape, according to a prescribed method of
representation (e.g. Denavit and Hartenberg, 1955 for serial link systems).

Let n be the total number of the joint degrees of freedom in S, i.e. the dimension of q, and J the set,
of Rn, of the possible values for q:

q 2 J � Rn:

Likewise, let m be the number of the independent parameters which identify the end-e�ector position,
and W the set of Rm to which Pr belongs:

Pr 2W � Rm:

Sets J and W are referred to as the joint space and the workspace, respectively. If S is a redundant
system, n > m, the joint degrees of freedom can always be distinguished in m dependent (or necessary)
parameters and nÿm independent (or redundant) parameters. The latter ones, thought to be ®xed, can
be considered as formal geometric parameters and, consequently, included in g. Thus, in the following,
without loss of generality, n is assumed to be equal to m and therefore

q 2 J � Rn

and

Pr 2W � Rn:

In the con®guration Cr, the vector Pr is related to the vector q through the geometric parameters g,
by m compatibility equations (closure equations), which are generally strongly nonlinear. The system of
these equations is represented synthetically as follows:

Fig. 2. The typical system con®guration.
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f�q, g, Pr� � 0: �1�
The con®guration Cd is determined by means of a displacement ®eld de®ned on Cr. It can generally

be computed as the solution of an elastic equilibrium problem de®ned on Cr and is related to the model
employed for describing the deformative behavior of the links. Thus, the generalized displacement of the
end-e�ector, due to the deformation of the links, is dependent on the con®guration Cr:

u � u�q, g, Pr�:
It follows that the position P of the end-e�ector in the con®guration Cd can be determined by the

sum of the position Pr, in Cr, and the vector u:

P � Pr � u�q, g, Pr�: �2�
To sum up, the kinematics of a ¯exible link system is ruled by the system of 2n equations (Eqs. (1)

and (2)):�
f�q, g, Pr� � 0
Pÿ Pr ÿ u�q, g, Pr� � 0

: �3�

When the system S has a serial structure, the con®guration Cr is determined only by the couple (q, g),
through the direct kinematic map fs, which relates the joint degrees of freedom to end-e�ector position.
In this case, Eq. (3) can be rewritten in the simpli®ed form�

Pr � fs�q, g� � 0
Pÿ Pr ÿ u�q, g� � 0

: �4�

On the other hand, when the system S has a parallel structure, Cr is determined only by the couple (g,
Pr), through the inverse kinematic map fp, and Eq. (3) reduces to the uncoupled system�

q� fp�g, Pr� � 0
Pÿ Pr ÿ u�g, Pr� � 0

: �5�

The direct kinematics problem consists of solving Eq. (3) for the 2n unknowns, P and Pr, i.e. in
determining all the end-e�ector positions P, if they exist, compatible with a given value, Åq 2 J, of the
joint degrees of freedom. This problem can be solved by ®rstly determining all the con®gurations Cr

which are compatible with Åq and, subsequently, by computing for each of them the displacement of the
end-e�ector, u. The inverse kinematics problem, the dual of the previous one, consists of solving Eq. (3)
for the 2n unknowns, Pr and q, i.e. in determining all the vectors q, if they exist, which are compatible
with a given end-e�ector position ÅP 2W. The inverse kinematics problem is generally more complex
than the direct one, since the con®guration Cr, on which Cd depends, is unknown. In the following, the
interest is focused on the solution of the inverse problem and the features of the usually employed
numerical methods are discussed.

The governing equations Eq. (3), making use of a compact notation, can be rewritten as

F�x� � 0, �6�
where

x �
�

q
Pr

�
and
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F�q, Pr� �
�

f�q, Pr�
Pr � u�q, Pr� ÿ ÅP

�
:

All the methods presented are based upon an iterative scheme, which can generally be written in the
form

x�k�1� � x�k� ÿ Aÿ1F�x�k��: �7�
Subscripts taken in parentheses denote the iteration number, x(k ) is the value of vector x at the k-th

step and A is a non singular 2n � 2n matrix, which is called the iteration matrix and which can or
cannot be dependent on x.

At each step, the di�erence between the current approximation and the solution Åx is called the error
vector and is denoted by e(k ),

e�k� � x�k� ÿ Åx:

2.1. Newton±Raphson method

The most popular, and general, approach to solve a system of nonlinear equations is the Newton±
Raphson method, which derives from Eq. (7) by taking

A�x� � F 0�x�,

where F '(x) is the Gateaux derivative of F at x,

F 0�x� �
�

Jq�x� JP�x�
Uq�x� I� UP�x�

�
and

Jq � @ f

@q
,

JP � @ f

@Pr

,

Uq � @u

@q

and

UP � @u

@Pr

:

The method is locally convergent and exhibits a quadratic rate of convergence.
The main drawback of this scheme lies in the computation of its iteration matrix, which is an

extremely huge and cumbersome task since the matrices, Uq and UP, are dependent not only on the
geometrical properties of S but also on the model employed to describe its deformative behavior. Such a
dependence implies an ad hoc implementation of the algorithm for each choice of the deformative
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model. Moreover, the method is not always applicable, since F '(x) can be singular and it is very
complex to calculate its points of singularity.

In spite of its good convergence properties, all this makes the Newton±Raphson method inapplicable
in practice, except for link systems of very simple structure (Lin et al., 1991).

2.2. Linear compensation schemes

To overcome the disadvantages of the Newton±Raphson method, some algorithms based on linear
compensation schemes have been proposed in the literature.

2.2.1. Linear compensation of the joint degrees of freedom (Lin et al., 1991) Ð RLC method
The method proposed in Lin et al. (1991) for the kinematics analysis of serial link systems is here

outlined by extending it to hybrid ones. It is called the RLC method in the following.
The iterative algorithm is derived from Eq. (7) by taking

A�x� � ALC�x�,
where

ALC�x� �
�

Jq�x� JP�x�
0 I

�
: �8�

This scheme is based upon the idea of correcting the positioning error stepwise, only through relative
joint movements of small amplitude. As it can be seen by substituting Eq. (8) in Eq. (7), the small
corrections are computed by solving for q the compatibility equations linearized in the neighborhood of
the current rigid con®guration C �k�r :

J�k�q �qÿ q�k�� � J
�k�
P

ÿ
Pr ÿ P�k�r

�
� 0:

Decomposing F '(x) as

F 0�x� � ALC�x� � U�x�
with

U�x� �
�

0 0
Uq�x� UP�x�

�
,

the convergence condition of the algorithm (Ortega and Rheinboldt, 1970) is given by

r
ÿ
Aÿ1LC�Åx�U�Åx�

�� 1, �9�
where r denotes the matrix spectral radius.

Therefore the RLC algorithm is locally convergent to Åx if the derivatives of the displacement with
respect to q and Pr are su�ciently small for admitting

r�U�Åx�� < 1:

Moreover, it can be seen that this scheme exhibits a linear rate of convergence.
The outlined method overcomes some drawbacks of the Newton±Raphson scheme. The iteration

matrix Eq. (8) is dependent only on the geometric features of S, so that it is not related to the
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deformative model employed or to the displacement ®eld. However, the method is applicable only when
the matrix ALC is non-singular so that the inverse exists

Aÿ1LC�x� �
�

Jÿ1q �x� Jÿ1q �x�JP�x�
0 I

�
: �10�

From Eq. (10), ALC is non-singular if and only if Jq is non-singular. Couples (q, Pr), describing
con®gurations Cr in which Jq is singular, are called kinematic singularities of S. As a consequence, the
algorithm does not converge close to the kinematic singularities. In order to avoid this disadvantage, it
is necessary to map in advance such singularities in order to con®ne the applicability of the method.

Another drawback of the RLC scheme lies in the necessity of a starting point su�ciently accurate to
guarantee the convergence to the solution. Therefore, if a good initial con®guration is not known, the
method needs to be started up. Finally, only one solution of the problem can be obtained.

2.2.2. Linear compensation of the relative elastic de¯ection (Svinin and Uchiyama, 1994) Ð DLC method
An iterative algorithm based upon a linear compensation scheme of the relative elastic de¯ections has

been proposed in Svinin and Uchiyama (1994). The method has been developed only for serial link
systems and consists of compensating stepwise for the di�erence between the previous and the current
de¯ections. From here onwards, it will be referred to as the DLC method.

The initial con®guration is set as�
q�0� � qr

P�0� � ÅP
,

where qr and ÅP simultaneously satisfy the compatibility equations.
Taking the compensation condition as

DP � P�k�1� ÿ P�k� � 0,

and linearizing the compatibility equations, written for serial link systems, in the neighborhood of C �k�r ,
it follows that

J�k�q �qÿ q�k�� � �uÿ u�k�� � 0:

Thereby, the iterative scheme reads as8<:q�k�1� � q�k� ÿ J�k�ÿ1q �u�k� ÿ u�kÿ1��
P�k�1�r � ÿfS�q�k�1��

:

Under the assumptions shown in Svinin and Uchiyama (1994), the algorithm converges to the couple
� Ãq, ÃPr� but, in general, it can be shown that

ÃP 6� ÅP,

where P̂ is the ®nal end-e�ector position:

ÃP � ÃPr � u� Ãq�:
It follows that the algorithm does not generally converge to a solution of Eq. (4) and, furthermore, it

needs to be started up by computing a solution of Eq. (1) compatible with the target position.
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3. The proposed algorithm

The proposed algorithm for the inverse kinematics analysis of S is based upon an iterative scheme
(Fig. 3) and consists of updating stepwise the con®guration of S only by means of rigid body motion
corrections (Ubertini, 1996).

The initial con®guration of S is de®ned by assuming a rigid link con®guration, C �0�r , which is
compatible with ÅP, and by determining the vector u, i.e. the deformed con®guration C

�0�
d referred to C �0�r

[Fig. 4(a)]. The end-e�ector position vector P(0), in the con®guration C
�0�
d , is generally di�erent from ÅP

because of the displacement due to the link deformation. The distance

e�k� � k �Pÿ P�k�kW,

between the end-e�ector position vector P(k ) in C
�k�
d and the target position ÅP, is referred to as the end-

e�ector positioning error Ð symbol6.6W denotes the assumed (euclidean) norm in W.
At each iteration, the end-e�ector positioning error is corrected through the compensation step

described in the following section. It consists of updating the actual rigid con®guration C �k�r by means of
suitable ®nite adjustments of the joint degrees of freedom [Fig. 4(b,c)].

Fig. 3. Flow chart of the proposed algorithm.
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The proposed iterative scheme develops as follows.

. Initial step.
The con®guration C �0�r is de®ned by setting:

q�0� � qr

and

P�0�r � ÅP,

where qr is a solution of the inverse kinematics problem of the rigid link system

Fig. 4. First step.
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f�q, g, ÅP� � 0: �11�
. k-th step.

* The con®guration C
�k�
d , relative to C �k�r , and the correspondent end-e�ector position

P�k� � P�k�r � u
ÿ
q�k�, g, P�k�r

�
are determined,

* if the end-e�ector positioning error, e(k), is smaller than a prescribed tolerance ep:

e�k� � k ÅPÿ P�k�kWRep,

the procedure terminates. Otherwise:

. k-th compensation step.
* The rigid body motion correction, Dq(k ), is determined (the details are given in Section 5),
* the con®guration C �k�1�r is de®ned by setting

q�k�1� � q�k� � Dq�k�,

and by computing the resulting end-e�ector position, P�k�1�r , through the resolution of the direct
kinematics problem of the rigid link system

f�q�k�1�, g, P� � 0: �12�

The outlined algorithm, repeated for each solution of Eq. (11) taken as the initial con®guration Cr,
allows us to obtain all the solutions of the considered problem (3).

4. The compensation scheme

The compensation scheme consists of updating the rigid con®guration of S, at the typical step k,
through the rigid body motion resulting from a suitable ®nite increment, Dq(k ), of relative joint
movements. Therefore, the compensation scheme is composed of two distinct phases: the computation
of the ®nite increment Dq(k ) and the de®nition of the rigid con®guration C �k�1�r .

The con®guration C
�k�
d can be equivalently represented either as the deformed con®guration of S or as

the con®guration assumed by a hypothetical rigid link system, S �k�r . Thereby C
�k�
d , considered as a

con®guration of S �k�r , is described by a vector of joint degrees of freedom, q
�k�
d , by the actual end-e�ector

position P(k ) and by a vector, g
�k�
d , which describes the geometry of the elements of S �k�r (Fig. 5). As for

the vector g, the geometrical parameters collected in g
�k�
d are evaluated according to the adopted method

of geometry representation (e.g. Denavit and Hartenberg, 1955 for serial link systems). The idea of the
hypothetical rigid link system was ®rst proposed by Derby (1983) in the context of serial link systems
and more details about the evaluation of q

�k�
d and g

�k�
d can be found in his work. However, it is worthy

of note that these vectors are to be computed at each step, since S �k�r depends on the actual deformed
con®guration C

�k�
d .

Once the vectors q
�k�
d and g

�k�
d are determined, the con®guration of S �k�r they describe is updated by

leading the end-e�ector from the actual position P(k ) to the target position (Fig. 5). This is equivalent to
solving the inverse kinematics problem of S �k�r :

f
�

q, g
�k�
d , ÅP

�
� 0: �13�
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Eq. (13) is nonlinear and generally admits, except for parallel link systems, more than one solution
(Mavroidis et al., 1994). Let q�k�c be the solution of Eq. (13) such that the quantity

kq�0� ÿ q
�k�
ci kJ �14�

takes minimum over the set of the possible solutions of Eq. (13), q
�k�
ci Ð symbol 6.6J denotes the

assumed (euclidean) norm in J. Then the relative joint movements correction is given by

Dq�k� � q�k�c ÿ q
�k�
d :

Now, the con®guration C �k�1�r is completely determined by computing P�k�1�r . In order to do that, the
direct kinematics problem (12) needs to be solved. The system of Eq. (12) is nonlinear too, and generally
admits, except for serial link systems, more than one solution (Lazard, 1992). Thus, assuming C �k�1�r as
the con®guration whose end-e�ector position is the closest one to ÅP, P�k�1�r is the solution of Eq. (12)
such that the quantity

k ÅPÿ P
�k�1�
ri kW �15�

takes minimum over the set of the feasible solutions of Eq. (15), P
�k�1�
ri .

Eq. (14) or Eq. (15) could become ine�ective if two or more solutions of Eq. (12) belong to a ball of
J with the center in q(0) and su�ciently small radius, or else if two or more end-e�ector positions
compatible with q(0) belong to a ball of W with the center in ÅP and su�ciently small radius. However, in
these cases, an a posteriori criterion can be adopted instead of Eqs. (14) and (15). It consists of assuming
C �k�1�r as the con®guration which is a�ected by the least positioning error among all the possible
con®gurations compatible with the solutions of Eq. (13) and the related solutions of Eq. (12).

To sum up, the present compensation scheme reduces at each step to the solution of an inverse and a
direct kinematics problem of rigid link systems. The solutions are here derived in symbolic form using
the GroÈ bner basis method (Buchberger, 1985; Wang, 1991). Both Eqs. (12) and (13) are transformed
into equivalent sets of polynomial equations with triangular structure, leaving all the coe�cients of the
variables as formal (symbolic) parameters instead of numerical values. In such a way, the solutions

Fig. 5. Compensation step.
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obtained generally hold for the whole class of link systems. Therefore, they are computed just once, in a
preliminary phase, and then specialized at each iteration.

Some detailed examples of solutions obtained by means of the GroÈ bner basis method can be found in
the works of Cox et al. (1992) and Lazard (1992). The method is brie¯y described in Appendix A.

Since all the symbolic solutions of Eqs. (13) and (12) are available, either Eqs. (14) and (15) or the a
posteriori criterion can be applied in order to identify the con®guration C �k�r . Moreover, all the possible
starting rigid con®gurations can be determined from the symbolic solutions of Eq. (13).

5. Convergence analysis

The convergence analysis of the proposed algorithm is not trivial because of the nonlinearity of the
compensation step. Moreover, the recursive equation of the iteration scheme can not be generally
expressed in a closed or analytical form. As a consequence, in order to determine only su�cient but not
necessary conditions for the algorithm to converge, the analysis has been performed by linearizing the
compensation step.

At the typical step k, the compatibility equations are identically satis®ed due to the choice of P�k�r .
Linearizing the compatibility equation in the neighborhood of the operating point �q�k�d , P�k�, g

�k�
d � which

describes the con®guration C
�k�
d of S �k�r :

Jq

�
q
�k�
d , P�k�, g

�k�
d

��
qÿ q

�k�
d

�
� JP

�
q
�k�
d , P�k�, g

�k�
d

�ÿ
Pr ÿ P�k�

�
� 0,

the correction for compensating the positioning error can be expressed as

q�k�1� ÿ q�k� � ÿJÿ1q

�
q
�k�
d , P�k�, g

�k�
d

�
JP

�
q
�k�
d , P�k�, g

�k�
d

�
� ÅPÿ P�k� �: �16�

The right hand side of Eq. (16) is the leading term of the nonlinear correction at the typical step k.
Thus, the main iteration formula can be written as

q�k�1� � q�k� ÿ Aÿ1d F�q�k��,

where

F�q�k�� � ÅPÿ Pr�q�k�� ÿ u
ÿ
q�k�, Pr�q�k��

�
:

The term Pr(q
(k )) denotes only a functional dependence and not necessarily an analytical one. As can

be seen from Eq. (16), the iteration matrix is taken as

A
�k�
d �

@Pr

@q

����
S
�k�
r

� Jÿ1P

�
q
�k�
d , P�k�, g

�k�
d

�
Jq

�
q
�k�
d , P�k�, g

�k�
d

�
:

Hence, the local condition for the algorithm to converge is

r

 
Iÿ

h
Jÿ1q JP

i����
Cd

h
Jÿ1P Jq ÿ Uq ÿ UPJÿ1P Jq

i����
Cr

!
< 1: �17�

Under the assumption that the displacements are su�ciently small to neglect the distinction between
the deformed and the undeformed con®gurations, from Eq. (17) it follows that
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r
�

Jÿ1q JP

�
Uq ÿ UPJÿ1P Jq

��
< 1: �18�

If the change of the displacement ®eld with respect to the change of the undeformed con®guration is
small, i.e.

r�Uq� � 1,

r�UP� � 1

and if the matrices Jÿ1q and Jÿ1P both exist, the local condition (18) is always satis®ed. Moreover, under
the assumption of small displacements the initial con®guration, which is taken as a solution of the
inverse kinematics problem of the equivalent rigid link system, is su�ciently accurate to guarantee a
global convergence. However, as can be seen from the numerical examples, the hypotheses assumed to
prove the convergence of the algorithm are too restrictive and Eq. (18) is a su�cient but not a necessary
condition.

6. Numerical examples

In this section, some numerical tests are presented to assess advantages and drawbacks of the outlined
method in comparison with the other schemes proposed in the literature.

6.1. Example 1 Ð Planar three degrees of freedom serial link system: ESA±SMS space manipulator
(Svinin and Uchiyama, 1994)

The ®rst example deals with a planar three-link system, shown in Fig. 6 and quoted in Svinin and
Uchiyama (1994). Its model parameters are chosen to be in correspondence with those of ESA±SMS
space manipulator (Svinin and Uchiyama, 1994). The link system consists of two ¯exible (link 1 and link
2) and one undeformable (link 3 or end-e�ector) members mutually connected by revolute joints. The
®rst two links of the manipulator are modeled as identical elastic homogenous cylindrical straight
beams, with length l1=3 m and l2=3 m, respectively. The cross sectional moment of inertia about the
bending axis and Young's modulus of elasticity are taken as Ia=0.7363 � 10ÿ4 m4 and

Fig. 6. Planar three link system: ESA±SMS space manipulator.
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E= 1.2223 � 109 N/m2, respectively. The third link is modeled as an undeformable beam of length
l3=0.5 m.

According to Fig. 6, the vector of the joint degrees of freedom is qT=[q1 q2 q3], where qi is the
counterclockwise angle from link i ÿ 1 to link i and the vector g is taken as gT=[l1 l2 l3] . The end-
e�ector position is completely determined by the position of the third joint, � ÅPx, ÅPy�, and the orientation
of the third link, ÅPc, thus ÅP

T � � ÅPx
ÅPy

ÅPc�. The tip of the end-e�ector is subjected to a horizontal
concentrated force F. The ®nite element method is used to solve the elastic equilibrium problem of the
link system.

The global corrections of the joint degrees of freedom with respect to the initial rigid con®guration
(i.e. with respect to the solution of the inverse kinematics problem of the rigid link system) are denoted
by Dqi and are plotted versus the target position in the graphs of Fig. 7. The target position is varied
whilst maintaining a constant x coordinate ÅPx and the orientation ÅPc, and adapting only the y
coordinate ÅPy. Di�erent curves in each graph refer to di�erent load values.

Fig. 8 shows the variation of the end-e�ector positioning error with respect to the number of
iterations, for two given target positions. These graphs evidence the good performance of the outlined
method.

The performances of the proposed method (RNC ) with respect to the Newton±Raphson method
(NR ) and the linear compensation schemes (RCL and DCL ) are compared in Table 1. For the sake of
comparison, the same starting point is assumed for all the algorithms and it coincides with a rigid body
motion solution obtained from the GroÈ bner basis method. The number of iterations for the algorithms
to converge for two values of the force is checked in the course of three tests and summarized in Table

Fig. 7. Global corrections of the joint degrees of freedom with respect to the initial rigid con®guration.
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1. The prescribed tolerance for the end-e�ector position is taken as ep=10ÿ6 m. Furthermore, for each
test, the residual error of the DLC algorithm,

er � k ÃPÿ ÅPkW,

between the obtained solution, ÃP, and the prescribed target position, is collected in Table 2. Referring to
three di�erent cases, the error e (k ) against the number of iterations is shown in Fig. 9.

Some considerations can be drawn from the analysis of the exposed results.
It is necessary to distinguish the cases where the target position is close to a kinematic singularity

from the others. The end-e�ector positions corresponding to the kinematic singularities of the present
link system are:

P � �0, 0, a� for 0Ra < 2p;

P � �a, 0, b� for 0Ra < 2p and 0Rb < 2p:

Therefore, for target positions su�ciently far from the singularities, the NR method exhibits the best
performance, whereas the others are substantially comparable.

Getting closer to a kinematic singularity, the performance of RLC and DLC drastically decreases,
being not always e�ective in obtaining the solution. Observing Fig. 9(a), the NR scheme could also be
less e�ective than the proposed method. In fact, its iteration matrix can become singular or quasi-
singular depending on the target position and the load value.

The results shown in Table 2 con®rm that the DLC method does not converge to a solution of the
problem, and the residual error is not always acceptable for the purpose of the analysis.

Notice that, in all the tests performed, NR, RLC and DLC are started with an accurate estimation of
the solution, which corresponds to a rigid con®guration compatible with the target position. Moreover,
at most one solution for each test is obtained. On the other hand, the proposed algorithm is self-starting

Fig. 8. End-e�ector positioning error versus the number of iterations for two given target positions.
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Table 1

Comparison between the proposed algorithm and other references. Prescribed accuracy: ep=10ÿ6 m

Test 1a F=ÿ500 N, ÅPx � 3:00 m

ÅPy 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00

NR 3 3 3 3 3 3 3 3 3 3 3

RLC 5 5 5 5 5 5 4 5 5 5 5

DLC 4 4 5 5 5 5 4 4 5 5 5

RNC 5 5 5 5 5 5 4 5 5 6 6

Test 1b F=ÿ1000 N, ÅPx � 3:00 m

ÅPy 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00

NR 4 4 4 4 3 3 3 3 3 3 4

RLC 6 6 6 6 6 6 6 6 7 7 7

DLC 5 5 6 6 6 6 5 6 6 6 6

RNC 6 7 7 7 7 7 6 7 7 7 7

Test 2a F=ÿ500 N, ÅPx � 0:10 m

ÅPy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

NR A 4 4 3 3 3 3 3 3 3 3

RLC 13 11 8 6 5 5 4 4 4 4 4

DLC 16 13 9 7 6 4 4 4 4 4 4

RNC 4 5 5 5 5 5 5 4 4 4 4

Test 2b F=ÿ1000 N, ÅPx � 0:10 m

ÅPy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

NR 5 5 5 4 3 3 3 3 3 3 3

RLC 22 17 12 9 7 6 5 5 5 5 6

DLC 25 19 13 9 7 5 5 5 5 4 5

RNC 6 8 8 7 7 7 6 6 5 5 6

Test 3a F=ÿ500 N, ÅPx � ÿ0:10 m

ÅPy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

NR 3 3 3 3 3 3 3 3 3 3 3

RLC A A 70 9 6 5 4 4 4 4 4

DLC A A 92 11 7 5 4 4 4 4 4

RNC 3 3 4 5 5 5 5 4 4 4 4

Test 3b F=ÿ1000 N, ÅPx � ÿ0:10 m

ÅPy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

NR 4 4 4 4 4 3 3 3 3 3 3

RLC A A A A 13 7 6 5 5 5 6

DLC A A A A 15 7 5 5 5 4 5

RNC 4 5 5 5 6 6 6 5 4 5 6
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and it o�ers all the solutions of the problem, even if, for the sake of brevity, only one solution for each
test has been shown.

As can be observed from the exposed results, RNC is the only scheme which is always e�ective in
getting the solutions, resulting in being una�ected by the kinematic singularities.

6.2. Example 2 Ð Planar three degrees of freedom hybrid link system

The second example deals with a planar hybrid link system shown in Fig. 10, which is made up of
two subsystems mutually connected. The lower module is a one degree of freedom parallel system,
which comprises one undeformable element (link 3) supported at both end by two ¯exible members (link
1 and link 2). Link 1 is assumed to be a prismatic joint, i.e. its length can be varied starting from the
reference length l1. The upper module is a two degrees of freedom serial link system, which consists of
one ¯exible (link 4) and one undeformable (link 5 or end-e�ector) member.

All the links of the whole system are mutually connected through revolute joints, link 1 is hinged and
link 2 is ®xed to the ground. The ¯exible members are assumed to be straight beams with the same
geometrical and elastic properties of the links of example 1. According to Fig. 10, the lengths of the
links are l1=3 m, l2=3 m, l3=3 m, l4=1.5 m and l5=0.5 m, respectively, and the vector g is taken as
gT=[l0 l2 l3 l4 l5 W2], where l0=6 m and W2=2p/3. The vector of the joint degrees of freedom is qT=[q1
q2 q3], where q1 is the elongation (i.e. the di�erence between the current and the reference length) of link
1 and q2 and q3 are the counterclockwise angle from link 3 to link 4 and link 4 to link 5, respectively.
The load, FT=[Fx Fy ], is applied at the free extremity of the end-e�ector. Analogously to example 1, the

Table 2

Residual end-e�ector positioning error of the DLC algorithm

ÅPy 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00

ÅPx � 3:00 1.93 1.45 1.01 0.62 0.30 0.09 0.07 0.14 0.27 0.57 1.04

ÅPy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ÅPx � 0:10 2.49 1.03 0.28 0.04 0.03 0.06 0.07 0.06 0.06 0.05 0.04
ÅPx � ÿ0:10 / / 0.16 0.04 0.03 0.06 0.07 0.06 0.06 0.05 0.04

er � 10ÿ2 m, F=ÿ500 N

ÅPy 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00

ÅPx � 3:00 7.72 5.83 4.05 2.48 1.21 0.35 0.30 0.53 1.10 2.31 4.19

ÅPy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ÅPx � 0:10 9.70 3.85 1.04 0.15 0.15 0.24 0.27 0.26 0.23 0.20 0.15
ÅPx � ÿ0:10 / / / / 0.17 0.24 0.27 0.26 0.23 0.20 0.15

er � 10ÿ2 m, F=ÿ1000 N
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end-e�ector position is given by ÅP
T � � ÅPx

ÅPy
ÅPc�, and the elastic equilibrium problem is solved at each

step by means of the ®nite element method.
Numerical tests for several target positions and load values have been performed, comparing the

proposed algorithm with the RLC scheme. No comparisons have been made with the DLC scheme,
since it is not applicable to hybrid systems, and with the NR scheme, because of the complexity of its
implementation and the cumbersome computations involved. In practice, the NR algorithm is not
applicable even in such a simple case.

Both the direct and the inverse kinematics problems generally admit two solutions. Eqs. (14) and (15)
have been adopted in order to update the system con®guration and they have been e�ective in all the

Fig. 9. Comparison between the proposed algorithm and other references.
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numerical tests. For the sake of comparison, the RLC scheme has been always started up with the
solutions of the inverse problem of the equivalent rigid system.

Fig. 11 depicts the error e (k ) versus the number of iterations for three di�erent target positions. For
each test both the solutions compatible with the prescribed end-e�ector position are shown, even if they
refer to di�erent values of the applied force.

When link 4 is aligned to link 3, q2=0, the link system locally loses a degree of freedom and the
related con®gurations correspond to kinematic singularities.

As emerges from tests 1 and 3, if the target position is su�ciently far from the kinematic singularities
the proposed algorithm and the RLC scheme exhibit comparable performances. This circumstance is due
to the accurate initial con®gurations employed to start up the RLC scheme. Failing good initial
approximations of the solution, the performance of the RLC algorithm gets worse, becoming sensibly
inferior with respect to the RNC algorithm.

On the other hand, as it emerges from test 2, if the target position gets closer to a kinematic
singularity, the RLC scheme can fail to converge, while the proposed method is still e�ective, even if its
rate of convergence becomes slower.

The results are in agreement with those exposed in Example 1, con®rming the general applicability of
the present method and its better performance with respect to the other schemes.

7. Conclusions

A method for a systematic approach to the inverse kinematics problem of ¯exible link systems has
been presented in this paper. The resulting algorithm is based upon a nonlinear compensation scheme,
which makes use of the GroÈ bner basis method. At the current state of the art, the applicability of the
outlined procedure is partially con®ned due to the practical limitations of the existing implementations
of the GroÈ bner basis method (e.g. Char et al., 1991; GraÈ be, 1993). On the other hand, some numerical
tests performed on di�erent system typologies result in a better performance of the present method with
respect to the methods which apply linear compensation schemes. In fact, the proposed algorithm is not
a�ected by the kinematic singularities, it is self-starting and it permits to get all the solutions of the
problem.

Fig. 10. Planar three degrees of freedom hybrid link system.
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Fig. 11. Comparison between the proposed algorithm and the RLC scheme.
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Appendix A

The GroÈ bner basis method is applied in the compensation step to obtain the implicit symbolic
solutions of Eqs. (12) and (13). In the following, the method is only brie¯y described, but more details
and some examples can be found in the works of Cox et al. (1992) and Lazard (1992).

Firstly, both the systems to be solved are converted into equivalent polynomial systems in suitable
variables, x, through the parametrization of the unit circle (Cox et al., 1992). Then, a GroÈ bner basis of
the ideal generated by each set of polynomials is computed with respect to the pure lexicographic order,
in the ring R(bb)[x] Ð bb denotes the symbolic vector which parameterizes the set of polynomials. In
particular, the resolutions of the inverse and the direct problem are carried out by setting bbT=[g P] and
bbT=[g q], respectively.
The systems of polynomial equations, obtained by equating the computed GroÈ bner bases to zero, are

proved to have a triangular structure and to be equivalent to the initial sets of equations, for each
(numerical) value of bb, which does not nullify any leading coe�cient of the bases. Therefore, at the
typical step, each implicit symbolic solution is opportunely specialized and the resulting sequence of
polynomial equations, in only one variable, is numerically solved. In general, just one of these equations
is of high degree.
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